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INTRODUCTION 

The static seismic loading provisions of the 1975 National 

Building Code of Canada include, as do most other seismic codes, 

an overturning moment reduction factor which is multiplied by 

the statically computed overturning moment to obtain the estimated 

maximum moment. This factor is an attempt to recognize that the 

static load distribution which is used to compute the total base 

shear is likely to overestimate the overturning moment. The reasons 

for this overestimation include the manner in which the various modes 

are combined during the dynamic response of the structure and also 

that the response spectra ordinates differ for the various modal 

periods. Earlier codes (Ferahian 1970) prescribed relatively low 

reduction factors, but recent earthquake damage (Hanson and Degenkolb 

1969) has indicated that the true overturning moments were not as 

low as had been estimated. Since that time, most codes have increased 

the required reduction factor, and several have eliminated the 

reduction factor entirely, e.g. the 1971 Code of the Structural 

Engineers Association of California and the 1973 New Zealand Code. 

The reduction factors used in the various codes have been based 

on empirical data and on relatively simple evaluations of the 

contributing phenomena. Previous investigations into overturning 
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moments (Bustamante 1965; Fenves and Newmark 1969) have emphasized 

the evaluation of specific buildings and have not included a general 

evaluation of reduction factors. The purpose of this paper is to 

evaluate the dynamic shear-moment relationship for uniform planar 

structures comprising shear walls and frames, and from this compute 

a dynamically-based moment reduction factor. 

DESCRIPTION OF MATHEMATICAL MODEL 

The mathematical model used for this evaluation is that of the 

continuous shear-flexure beam, acting as a vertical cantilever. In 

this model, the frames are equated to a shear beam with stiffness 

parameter GA, and the shear walls are equated to a flexural beam 

with stiffness parameter EI. The basic static and dynamic analysis 

of this model and the application of the model to practical building 

structures have been previously published (Heidebrecht and Stafford 

Smith 1973). The equation of motion for such a structure subjected 

to earthquake ground motion is given by 
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where x is the lateral motion of the building, z is the height above 
IP 

the base, a
2 
= GA/EI, c

2 
= EI/pA, where pA is the mass of the building 

per unit height, and U0  is the ground acceleration due to the earth-

quake. 

The solution to Eq. [1] can be expressed in the form 

[2] x(z,t) = E T(z)cii(t) 
i=1 ' 

in which Ti(z) is the ninth mode shape, determined as described by 

Heidebrecht and Stafford Smith (1973), and q i(t) is generalized time- 
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dependent response function for mode "i". The differential equation 

governing this response function is given by 

[3] q i(t) + wlq i(t) = 

in which 4).
1 
 is the "i"th natural frequency, determined as described 

by Heidebrecht and Stafford Smith (1973), and pi  is the modal 

participation factor, defined by 

H 

[4] Pi = of T.(z)dz 

of 2 
T.(z)dz 

It is useful if the mode shape is normalized so as to make the 

denominator of Eq. [4] equal to unity; the remainder of this dis- 

cussion incorporates this normalization. 

RESPONSE ANALYSIS 

The purpose of this analysis is to determine the maximum 

values of specific response parameters. In order to do so, the 

maximum response in each mode will be determined and the resulting 

modal maxima will then be combined using the root sum square sum-

mation (the maximum response in each mode is squared; these squares 

are summed for all contributing modes and the square root of this 

sum is the estimated overall maximum response) to obtain an estimate 

of the overall maximum response. Using the response spectrum approach, 

the maximum displacements and accelerations in mode "i" are given by 

[5] xriiax(z) = p.S 
x
.T.(z) 
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in which S
xi 
 and S

ai 
 are, respectively, the spectral displacement 

and acceleration ordinates at frequency w1 . The equivalent inertial 

loading in mode "i" is given by 

[7] wi(z) = pApi S
ai

Ti(z) 

and the resulting maximum base shear and moment in mode "i" can be 

expressed as 

H 
[8] V i  = , pApiSa.t

_of 
T.(z)dz 

[9] Mi  = pApiSai 
of 
 zTi(z)dz 

Including N modes in the total response of the structure, the maxi-

mum base shear and moment are then calculated by 

[10] V*  
N 

E V 4
2  

i=1 I  

  

* N 
[11] M = E 

N i=1 1  

REDUCTION FACTOR ANALYSIS 

The general definition of the overturning moment reduction factor 

is the ratio of dynamic base moment to static base moment when the 

dynamic base shear and the static base shear are taken to be equal. 

This definition can be expressed in the form 

i/ 
 [12] J

N
M
N 

M
o 
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in which J
N 
is the moment reduction factor computed for N modes in 

the dynamic response, Mo  and Vo  are, respectively, the base shear 

and moment computed from the static loading, and H is the height of 
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the structure. Expressing the static non-dimensional moment-shear 

ratio by 

[13] ao  = Mo  
V
o
H 

allows the reduction factor to be put into the following form 

[14] J N  = 1 MN  
a
o VN H 

For the normal triangular static loading prescribed in the 1975 

National Building Code of Canada, as shown in Fig. la, a0  = 2/3. 

For slender buildings, the Code requires the addition of a con-

centrated force at the top of the building, as shown in Fig. lb. 

For the maximum value of this top force, equal to fifteen percent 

of the base shear, a0  = .715. 

In order to assess the effect of the response spectrum on the 

moment reduction factor, it is useful to define a constant spectrum 

reduction factor TN, determined by letting Sai  = constant for all 

modes in Eqs. [8] and [9]. In order to determine the effect of 

including higher modes, the first mode reduction factor is defined 

by 

[15] ji 1
M
1 

a
o V H 

1 

Since M
1 

and V
1 in the above equation are determined directly from 

Eqs. [8] and [9], Sai  does not enter into the computation and Ti  is 

effectively an expression of the relationship between the static load 

distribution and the first mode dynamic behaviour. 
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RESULTS 

Calculations of reduction factors have been made for shear-

flexure beams with a variety of values of the stiffness ratio a2. 

The significant parameter in describing the shear-flexure beam is 

the non-dimensional parameter aH. Figure 2 shows the mode shapes 

for different values of aH. When aH = 0, the structure is a pure 

shear-wall. When aH is very large, the structure is a pure frame; 

for practical computational purposes, the "pure frame" value of aH 

is taken to be 30. For a mixed frame-shear wall building, the value 

of aH = 5 has been used since that mode shape is very nearly an 

average of the pure frame and shear wall mode shapes. 

Calculations have been made for two different sets of response 

spectra, in order to assess the effect of different spectra on the 

moment reduction factor. One of these sets is the set of average 

response spectra given by Housner (1959), as given in Fig. 3a. The 

other set of spectra, given in Fig. 3b, are these recommended in 

the National Building Code of Canada (1975). 

Figures 4 and 5 show the moment reduction factors computed for 

five modes and for two different values of damping for ao  = 2/3; 

for other values of ao, the ordinates of these diagrams should be 

multiplied by 3a0/2. The reduction factor specified in the 1975 

National Building Code of Canada is also shown in each diagram. 

It can be seen from these figures that the damping, type of structure, 

and the response spectrum each have significant effects on the re- 

duction factor. Damping is the least significant of these, although 

it can contribute to sizeable differences in value in the intermediate 

period range (1.0<T<2.5). The differences between the results for 
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the two sets of response spectra are primarily due to different 

acceleration bounds. In particular, the 1975 N.B.C. of Canada 

spectrum does not become asymptotic to the ground acceleration 

at low periods, whereas the Housner spectrum does. 

Fig. 6a shows the variation of the constant spectrum reduction 

factor J
N 
(N=5) and the first mode reduction factor J

1 
as a function 

of the parameter aH. The values of JN  are identical to the very 

short period values of J N , due to the fact that the spectral accel-

erations are constant in the low period region. From these diagrams, 

it can be seen that the higher modes alone contribute very little 

to the reduction factor. The major contribution is therefore due 

to the changing ordinates of the response spectra associated with the 

higher modes. The differences between structural types are due pri-

marily to the differing ratios of higher periods to the fundamental 

periods, and the consequent differences in spectral accelerations 

at the higher mode periods. Fig. 6b shows the changing ratio of 

second period to fundamental period for different values of aH. 

CONCLUSIONS AND RECOMMENDATIONS 

An examination of Figs. 4 and 5 shows that the reduction factors 

prescribed in the 1975 National Building Code of Canada are conser-

vative for shear wall buildings but may be as much as fifteen percent 

too low for frame structures having intermediate to long periods. 

From these results, it would appear that increasing the minimum 

plateau of the Code reduction factor from 0.8 to 0.9 would provide 

a safe level of reduction factor for most structures. It should also 

be possible to allow for reduced factors for shear wall structures 

provided that the fundamental mode shape is close to that given for 
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aH = 0 in Fig. 2. Further investigations for non-uniform structures 

are required before more definitive recommendations can be made. It 

is also true that inelastic response and varying forms of energy 

absorption within structures may also have a significant effect on 

the overturning moments which occur during the dynamic response of 

a structure. 
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FIGURE 1 STATIC SEISMIC LOADING, 
NATIONAL BUILDING CODE OF CANADA 



E
L

E
V

A
T

IO
N

  A
B

O
V
E

 B
A

S
E

  z
  /
H

 

.4 .6 .8 1.0 
y(z) /y(H) 

21-10 

FIGURE 2 FUNDAELNTAL MODE SHAPES 
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FIGURE 3 DESIGN RESPONSE SPECTRA 
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